

DATA SHEET

SCREWDRIVER

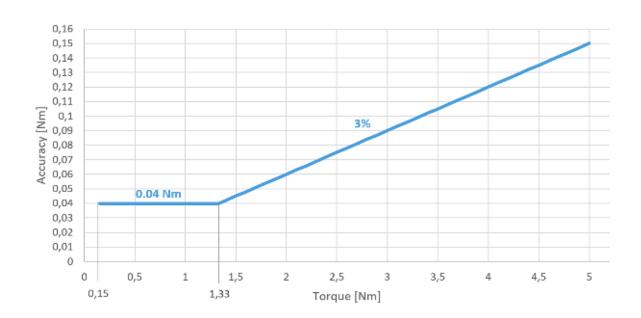
1. Datasheet

1.1. Screwdriver

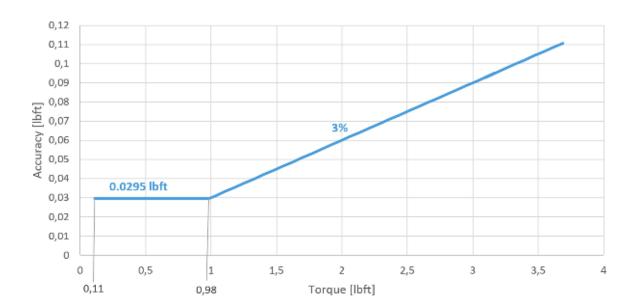
General Properties		Minimum	Typical	Maximum	Unit		
Targue range		0.15		5	[Nm]		
Torque range		0.11	-	3.68	[lbft]		
	If to you o < 1.22 Nm/ 0.00 lbf		0.04		[Nm]		
Torque accuracy*	If torque < 1.33 Nm/ 0.98 lbft	-	0.03	-	[lbft]		
	If torque > 1.33 Nm/ 0.98 lbft	-	3	-	[%]		
Output speed	-	-	340	[RPM]			
Corouglon oth within	full cofoty			35	[mm]		
Screw length within	Tull Salety	-	-	1.37	[inch]		
Chank atraka (aarau	v avial		-	55	[mm]		
Shank stroke (screv	v dxis)	-		2.16	[inch]		
Shank preload (adju	ustable)	0	10	25	[N]		
Safety feature force	•	35	40	45	[N]		
Ctorogo tomporatur		0	-	60	[°C]		
Storage temperatur	е	32	-	140	[°F]		
Motor (x2)		Integrated,	Integrated, electric BLDC				
IP Classification		IP54	IP54				
ESD Safe	Yes	Yes					
Dimensions	308 x 86 x	114		[mm]			
Dilliensions		12.1 x 3.4 x 4.5			[inch]		
Moight	2.5			[kg]			
Weight		5.51	[lb]				

^{*} See **Torque Accuracy Graph** for further information.

Operating Conditions	Minimum	Typical	Maximum	Unit
Power supply	20	24	25	[V]
Current consumption	75	-	4500	[mA]
Operating temperature	5	-	50	[°C]
Operating temperature	41	-	122	[°F]
Relative humidity (non-condensing)	0	-	95	[%]
Calculated operation life	30 000	-	-	[Hours]


			Supported Sc	rews Metric		
Material typ	oe	Magnetic				
Screw leng			35 mm thread le	ngth)		
Head type Cylinder					Counter sunk	Button head
Appearance						
Standard		Din 912 / 3150 4762	ISO 14579 📆	ISO 1458II 📆	150 14581	DIN 7485A 🗊
Ctarradra	1	150 4762 8	₩	₽	-	*,7
	M1.6	✓	N/A	N/A	N/A	N/A
	M2	✓	✓	N/A	✓	✓
Course suit suit	M2.5	✓	✓	N/A	✓	✓
Supported Thread Size	МЗ	✓	✓	✓	✓	✓
	M4	✓	✓	✓	✓	✓
	M5	✓	✓	✓	✓	✓
	М6	√	√	√	✓	√

Supported Screws US Standard					
Material type	Magnetic				
Screw length	Up to 1.96 inches (1.37 inches thread length)				
Head type	Cylinder	Button head	Counter sunk		


	Supported Screws US Standard										
Appearance						0)
Standard		ASME B18.3		ASME 4 B18.6.3		ASME B18.6.3		ASME B18.3		ASME B18.6.3	
	1#	\checkmark		N/A		N/A		N/A		N/A	
	2#	✓		√		✓		N/A		√	
	4#	✓		√		✓		✓		√	
Supported Thread	6#	✓		√		✓		✓		√	
Size	8#	✓		✓		✓		✓		✓	
	10#	✓		✓		✓		✓		√	
	12#	N/A		✓		✓		N/A		N/A	
	1/4"	✓		N/A		N/A		✓		N/A	`

Torque accuracy Metric

Torque accuracy US Standard

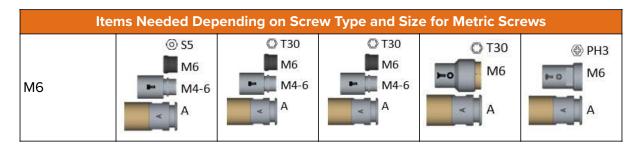
Screw-bit System

This system will highly increase the efficacy of the screws to be picked up, aligned with the bit, moved around with the Screwdriver and screwed in/out. Therefore, it is highly recommended to set up the Screw-bit System correctly to keep a high success rate.

Example of the Screw-bit System for an ISO 14579 screw.

- 1 Screw
- 2 Screw fix
- 3 Screw carrier
- **4** Bit
- **5** Bit holder

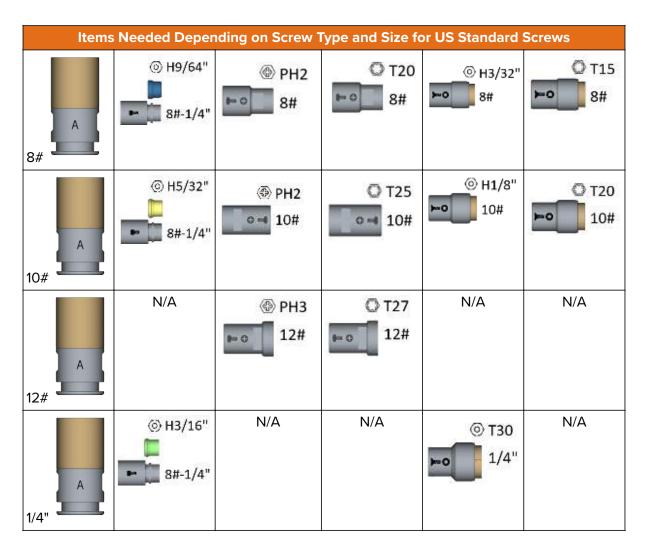
The sections below explain the different components of the Screw-bit System and how to set it up correctly.



In the following tables, an overview of the items needed depending on the Screw type and size are shown.

Items Needed Depending on Screw Type and Size for Metric Screws

Ite	ms Needed Dep	ending on Scre	w Type and Siz	e for Metric Scr	ews
Head type		Cylinder		Counter sunk	Button head
Screw standard	Din 912 / 150 4762	ISO 14579 📆	ISO 1458II 🗍	ISO 14581	ргу 7485Д 🕤
Thread Size	Bit holder, bit, s	crew carrier and	screw fix need	ed	
M1.6	© S1.5 M1.6 M1.6 B	N/A	N/A	N/A	N/A
M2	© S1.5 M2 M2-3 A	© T6 M2 M2-3	N/A	© T6 M2 B	© PH1 M2
M2.5	© \$2 M2.5 M2-3	© T8 M2.5 M2-3	N/A	© T8 M2.5	⊕ PH1M2.5B
M3	© \$2.5 M3 M2-3	© T10 M3 M2-3	© T10 M3 M2-3 A	© T10 M3	⊕ PH1 M3 A
M4	© \$3 M4 M4-6	© T20 M4 M4-6 A	© T20 M4 M4-6 A	© T20 M4	PH2M4A
M5	© S4 M5 M4-6	© T25 M5 M4-6	© T25 M5 M4-6	© T25 M5	



Items Needed Depending on Screw Type and Size for US Standard Screws

Items Needed Depending on Screw Type and Size for US Standard Screws						
Head type	Cylinder	Button	head	Counte	er sunk	
Screw standard	ASME B18.3	ASME B18.6.3	ASME B18.6.3	ASME B18.3	ASME B18.6.3	
	HEX	Cross recessed	Torx	HEX	Torx	
Thread Size	Bit holder, bit, s	crew carrier and	screw fix neede	ed		
1# B	⊕ H1/16" ► 1#	N/A	N/A	N/A	N/A	
2# B	⊚ H5/64"	© PH1 ▶ 2#	© T8	N/A	© T6 ▶•• 2#	
4# B	H3/32"		© T10 ►•• 4#	© H1/16" ►0 4#	© T8	
6#	⊚ H7/64" р 2#-6#	⊕ PH1 6#	○ T15 ►• 6#	© H5/64" ►• 6#	© T10	

1. Screws

The first step is to know what type of screw is going to be used. The screw type will define what type of bit, screw carrier, screw fix (if any) and bit holder shall be used.

The recommended screw types for the Screwdriver are the ones that have the properties mentioned previously on the **Supported Screws** table.

2. Bit Holder

Select the right bit holder depending on the screw type and size to maximize the efficacy of the Screw-bit System based on the table in section Items Needed Depending on Screw Type and Size for Metric or Items Needed Depending on Screw Type and Size for US Standard Screws.

The Bit holder generates a magnetic force that will keep the screw attached and aligned to the bit. The Bit holder **A** generates a higher magnetic force than **B**. Therefore, the bit holder B is commonly used for the smaller and lighter screws.

3. Bits

Select the right bit depending on the screw type and size to maximize the efficacy of the Screw-bit System based on the table in section Items Needed Depending on Screw Type

and Size for Metric or Items Needed Depending on Screw Type and Size for US Standard Screws.

The bits have signifiers to help identifying what bit type and size these are.

Screw type standard	Shows bit size and type
Din 912 / ISO 4762 ASME B18.3 HEX Cylinder	5
ISO 14579 ISO 14580 ISO 14581 ASME B18.6.3 Torx Button head ASME B18.6.3 Torx Counter sunk	T-30
DIN 7985A ASME B18.6.3 Cross recessed Button head	РНЗ

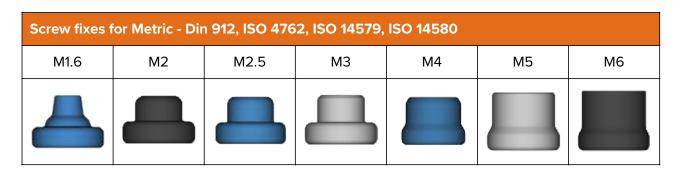
Supported bit shank properties:

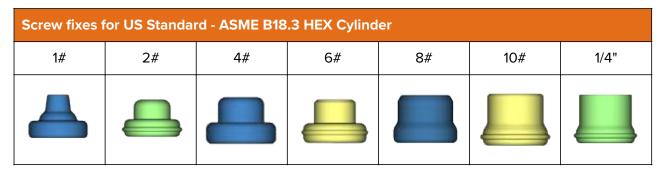
- Type 1/4" HEX
- · Length 25 mm

NOTE:

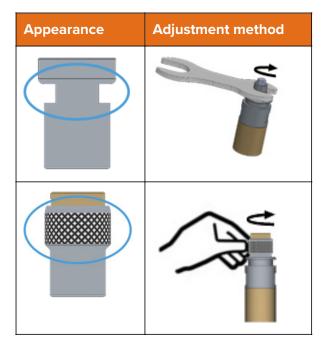
Bits longer that 25 mm could be used. However, the screw carrier and the screw fix might not hold the screw properly in place.

4. Screw Carrier and Screw Fix


Select the right screw carrier and screw fix depending on the screw type and the size to maximize the efficacy of the Screw-bit System based on the table on section Items needed depending on Screw type and size.


The screw carriers have signifiers to help identifying what screw type and size these can be used with.

Screw thread size	Screw type illustration
МЗ	⊕ •••



The screw fixes are only needed for the Din 912, ISO 4762, ISO 14579, ISO 14580 and ASME B18.3 HEX Cylinder screw types. The screw fixes also have signifiers to show what size of screw they support.

All screw carries must be adjusted to ensure high performance of the Screw-bit System.

The screw carries must be adjusted so that the screw head seats stable on the screw carrier avoiding a gap in between. See the pictures below as reference.

When this is achieved, remove the screw and push in the screw fix (only Din 912, ISO 4762, ISO 14579, ISO 14580 and ASME B18.3 HEX Cylinder screw types).

The final setup of the Screw-bit System with the screw in place should look like picture below.

Screw standard	Din 912 / ISO 4762 / ISO 14579 / ISO 14580 / ASME B18.3 Hex Cylinder	ISO 14581 / ASME B18.6 HEX Counter sunk / ASME B18.6.3 Torx Counter sunk	DIN 7985A / ASME B18.6.3 Cross recessed Button head / ASME B18.6.3 Torx Button head	(max)
Screw-bit System appearance				

5. Attaching and Detaching the Screw-bit System to/from the Screwdriver

The last step is to attach the system to the Screwdriver by placing the hex shape of the bit holder inside of the end of the Screwdriver's shank as shown in the picture below. The system will be attached to the Screwdriver by a magnetic force.

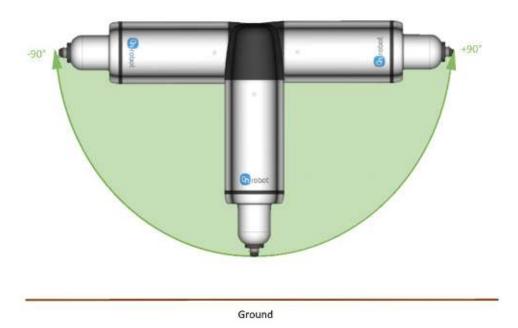
To remove the Bit holder from the Screwdriver's shank, follow the steps below:

- 1. Move the shank all the way out to position 55 by operating the user interface in the robot or in the Web Client.
- 2. As shown in the images below, use the provided key to grab the Bit holder.
- 3. While holding the key, move the shank inwards by operating the user interface in the robot or in the Web Client.

Screwdriver Position to Execute Commands

To successfully execute the Screwdriver commands, it is fundamental to position the Screwdriver correctly. This is achieved if the following two conditions are met:

1. The Screw-bit System must be perfectly aligned to the screw or thread.



2. The distance between the Screwdriver's bottom part and the surface where the action takes place must be within the range of 0-8 mm [0-0.31 inches].

Screwdriver Position to Execute Commands

To successfully execute the Screwdriver commands, it is fundamental to operate the Screwdriver downwards or maximum sidewards. The Screwdriver should not be operated upwards or with an angle higher than 90° orientate with respect to the ground, since this will trigger the safety feature.

LED - Device Status

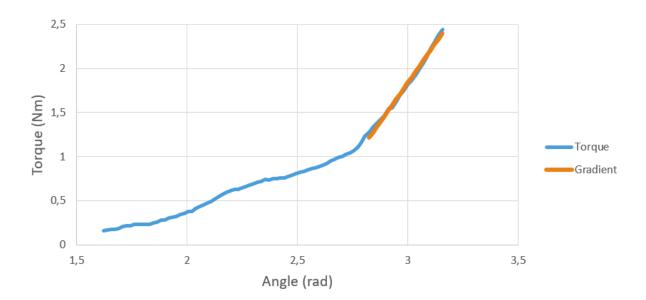
The screwdriver has a LED that shows the device status.

Color	Device Status	
O No light	Power missing	
Steady green	Ready to work - Idle - Static	
Blinking green	Initializing	
Steady orange	Busy – Moving/rotating shank	(P) robot
Blinking orange	Operational malfunction	
Steady red	Not working – Hardware problem	Ŷ
Blinking red	Safety – Emergency stop	

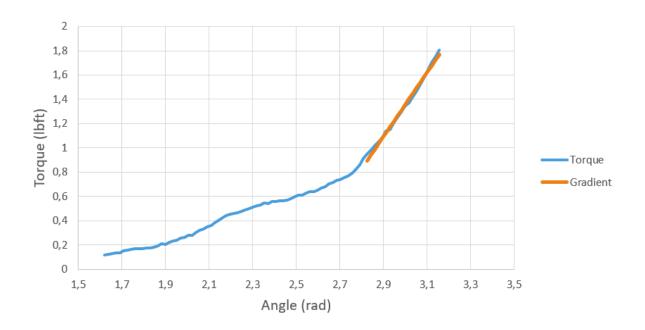
Torque Angle Curve and Torque Gradient

The torque gradient shows how the torque is applied in the last phase of the Tightening screw command. This could be used as an indicator to detect if a Tightening command is performed correctly.

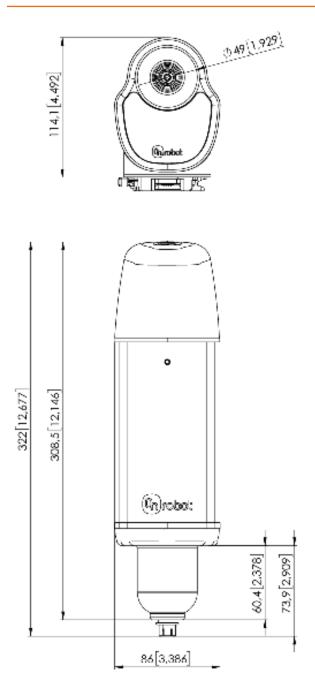
For instance, the torque gradient could be different if:

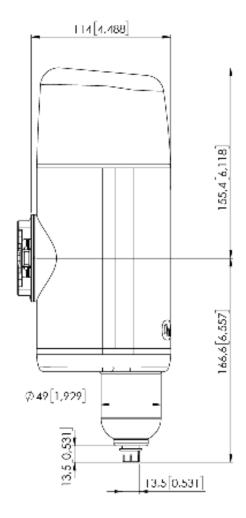

- The hole thread is not long enough
- The hole thread is different from the screw thread
- The hole thread is not clean (for instance by deburrs from CNC machining)
- The friction between the screw thread and the hole thread is too low or too high
- The friction between the screw head and the tighten part is too low or too high

A torque gradient variable is made available to be checked in the robot program.


The graph below shows a normal Torque/Angle curve. In this case has been made with a M4 screw and 2.4 Nm as target torque.

Torque angle curve Metric




Torque angle curve US Standard

1.2. Screwdriver

All dimensions are in mm and [inches].